
SECURITY AUDIT REPORT
in favor of CARMINE FINANCE



Summary

This report has been prepared for Carmine Finance in the source code of the project as
well as in project dependencies that are not part of an o�cially recognized library. The
audit has been conducted by combining static and dynamic code analysis with a manual
review of the source code by Hack-a-Chain’s research team.

The audit process analyses:
1) Adherence to widely recognized best practices and industry standards;
2) Vulnerability to most common attack vectors;
3) Thorough line-by-line review of the code base;
4) Ensuring that contract logic meets the specifications of the project’s whitepaper.

The security audit result is composed of di�erent findings, whose vulnerabilities are
classified from critical to informational, according to the following impact versus
likelihood matrix:

High Critical High Medium

Medium High Medium Low

Low Medium Low Low Informational

High Medium Low

Likelihood

After presenting the findings to the client, they are granted a 7 days period to fix the
vulnerabilities. This report will specify all vulnerabilities found and whether they were
fixed by the team.

2



Overview

Project Summary

Project Name Carmine Finance

Auditor Joao Veiga, Pedro Destri

Description Options Automated Market Maker

Platform Starknet

Language Cairo

Codebase https://github.com/CarmineOptions/carmine-protocol

Initial Commit 6274ab7b2b4a0bfd5d524b67f9996071bab8e319

Commit after fixes 4920a68930816a43b0d0aeaf85a1688a58c4aba0

Audit Summary

First delivery date 04/05/2023

Final delivery date 05/01/2023

Code Inventory

AMM AMM contract

Findings

ID Title Category Severity Status

AMM-1 Handle stale
oracle prices

External
contract

Low Fixed

AMM-2 Diverging
pool-oracle

assets

Logical Medium Fixed

AMM-3 Reentrancy
guard

consistency

Reentrancy Informational Fixed

AMM-4 Pricing model
documentation

Documentation Informational Acknowledged

AMM-5 Test suite
documentation

Documentation Informational Acknowledged

3



Table of contents

Table of contents 5
Audit report 6
1 Proxy 7

1.1 Implementation 7
1.2 Dependencies 8

2 Token contracts 9
2.1 Dependencies 9

3 AutomatedMarket Maker 10
3.1 A review of option contracts 10
3.2 Carmine implementation of options 10
3.3 Pricing formula 11
3.4 External contract dependencies 14
3.5 Team indicated concerns 16
3.6 Generic Vulnerability Hypothesis 20

4 Detailed issue report 21
AMM-1 - Handle stale oracle prices 22
AMM-2 - Diverging pool-oracle assets 23
AMM-3 - Reentrancy guard consistency 24
AMM-4 - Pricing model documentation 25
AMM-5 - Test suite documentation 26

Disclaimer 27

4



Audit report
The audited code consists of 4 separate smart contracts: (1) options AMM, (2)
Proxy implementation, (3) token representing option contract, (4) token
representing liquidity pool shares, available at
https://github.com/CarmineOptions/carmine-protocol.

Sections 1, 2, and 3 perform a thorough overview of the contracts logic,
architecture, and implementation.

Section 4 provides a specific description of each audit recommendation.

The disclaimers section provides the legal terms of responsibility for the auditor.

5

https://github.com/referencedev/staking-farm
https://github.com/CarmineOptions/carmine-protocol


1 Proxy
The application utilizes the Proxy pattern, which allows upgrades in the contract’s
code to be made seamlessly. The contract is split into two parts (1) a Proxy
contract that stores the application’s state and redirects all calls it receives to (2)
an Implementation contract, which defines the logic for the contract.

The core aspect of the Proxy pattern is that it allows the implementation contract
to create a function to upgrade the contract - which is done by changing the
address of the implementation contract that is saved in the Proxy contract’s state.

1.1 Implementation

The Proxy implementation (contracts/proxy_contract/proxy.cairo) follows
Openzeppelin’s standard for Cairo Proxies, mimicking a widely tested external
library.

However, the utilization of the Proxy pattern also requires a di�erent
implementation in the logic contract than a regular contract would:

1. It cannot set its initial state through a regular constructor, it must have a
di�erent external function that calls Proxy.initializer

2. It must have a function to upgrade the reference to the implementation
contract (if the contract is to be upgradable)

3. The contract must protect the upgrade function so that only an authorized
account can call it

After reviewing the code implementation, we found that all those requirements
were fulfilled.

Another important point of attention is storage collision. In traditional Proxy
architectures on EVM, upgrades of the contract can clash storage locations based
on the order of declaration of variables (this is a system known as structured
storage). Starknet implements unstructured storage by default, meaning the
memory location of every storage variable is a hash of its name. This makes it
extremely di�cult for 2 variables to collide in the case of an upgrade.

The team has also been extra careful and implemented a series of tests
(tests/test_proxy.cairo) to assert that storage collisions do not happen.

6



1.2 Dependencies

The Proxy contract is highly dependent on the OpenZeppelin library for Cairo. The
library claims to be highly experimental code in its repository and advises users to
use it at their own risk.

Even though that is a point of concern, we have reviewed the Proxy contract
implementation from OpenZeppelin and extensively read its documentation. The
logic is robust and the studies made by the team have shaped some of the most
important design patterns found for Cairo contracts, which is why we deem its
use to be secure.

7



2 Token contracts
The protocol implements 2 di�erent token contracts following the ERC-20 token
implementation from the Openzeppelin library for Cairo contracts.

- lptoken (contracts/erc20_tokens/lptoken.cairo) -> Represents shares of
ownership of the liquidity pools in Carmine

- option_token (contracts/erc20_tokens/option_token.cairo) -> Represents
an option contract owned by a user

lptoken is implemented as a regular ERC20 token with no extra capabilities.

option_token is implemented a little di�erently. It stores the option’s metadata in
its state: base token, quote token, option type, strike price, maturity, and side.

2.1 Dependencies

The contracts are implemented following the design pattern of Openzeppelin’s
library for token contracts. The library claims to be highly experimental code in its
repository and advises users to use it at their own risk.

Even though that is a point of concern, we have reviewed the token
implementations from Openzeppelin and extensively read its documentation. The
logic is robust and the studies made by the team have shaped some of the most
important design patterns found for Cairo contracts, which is why we deem its
use to be secure.

Moreover, the importance of token contracts for the overall security of the
contract is minimal, since they are only responsible for representing token logic
and do not implement any liquidity pool or option logic - those are entirely
structured inside the Automated Market Maker Contract.

8



3 AutomatedMarket Maker
The Automated Market Maker contract (AMM) is responsible for implementing the
core logic for Carmine. The construct is structured as a logic contract, to be used
with a Proxy contract (refer to Proxy section).

3.1 A review of option contracts

The contract allows traders to buy or sell options contracts.

An option is a derivative contract between two parties that grants its holder (the
trader who bought the option) the right - but NOT the obligation - to buy or sell its
underlying asset at a fixed price (strike price) on a specific date (maturity)1.

Calls are the name given to options that give their holder the right to purchase the
underlying asset at a given price. For traders to make money with a call, the price
of the underlying asset must rise above the option’s strike price - which would
allow the holder to buy the asset at a discount and immediately sell it on the open
market.

Puts are the name given to options that give their holder the right to sell the
underlying asset at a given price. For traders to make money with a put, the price
of the underlying asset must fall below the option’s strike price - which would
allow the holder to buy the asset at market price on the open market and
immediately exercise the option’s right to sell it at the strike price.

In practice, most options markets implement cash-settlement. Cash-settlement is
a type of settlement that involves paying or receiving cash instead of actually
buying or selling the underlying asset - this is the settlement used in Carmine
Finance.

3.2 Carmine implementation of options

Options are traditionally traded in derivative exchanges through order books or
Over the Counter in traditional financial markets. Blockchains are notorious for
being order book unfriendly and most trading markets in DeFi are run by
Automated Market Makers.

Automated Market Makers are algorithms that are always ready to provide a sale
price for any trader wanting to buy or sell an asset - they will always accept the
trade and assign a given price to it based on a mathematical formula. This is the

1 This is actually the description of an european style option. American style options allow its holder to
exercise the buy/sell right at any time before expiration.

9



design that powers Uniswap, Balancer, and a large quantity of DeFi powerhouses
that operate spot trading markets.

However, there is a huge di�erence between derivatives markets (such as options)
and spot markets. In derivatives markets it is not possible to simply trade assets,
each asset represents the obligation of a party to pay an undetermined amount of
money to the other party based on uncertain future events. Therefore, Carmine
must implement a way to keep option sellers liable for the options that they have
sold.

The solution found by Carmine is to have 2 di�erent liquidity pools for each pair of
assets - one for calls and the other for puts.

1. When a user wants to buy an option, the liquidity pool is the seller
(counterparty)

a. liquidity pool receives premium
b. liquidity pool locks capital to guarantee possible option settlement
c. user receives option token representing the call
d. at settlement, if the option is in the money, the user receives their

profits and the pool unlocks the rest of the locked capital
2. When a user wants to sell an option, the pool buys it from them

a. user receives premium
b. user must lock capital in the AMM contract to guarantee possible

option settlement
c. user receives option token representing their position
d. at settlement if the option is in the money, pool receives their profits

and user unlocks the remaining capital

Using this mechanism the pool is always able to provide trades to any user - given
that liquidity is su�cient to lock capital at risk/pay premium.

The key component in this mechanism is the pricing formula used to determine
the price of options at any given time, which is analyzed in the next section.

3.3 Pricing formula

Spot market AMMs traditionally utilize very simple pricing formulas, such as the
constant product formula. Options pricing, on the other hand, is very complex
mathematically. Carmine chose to utilize the Black-Scholes model, one of the first
and most widely used option pricing models as the formula that controls the
AMMs dealings.

10



Where:

- C(St, t) - Price of Call at time t and underlying price St
- P(St, t) - Price of Put at time t and underlying price St
- N - Standard normal cumulative distribution function
- S_t - Price of the underlying asset at time t
- K - Strike price
- r - Annualized risk-free rate
- T - Time of option expiration
- t - Current time
- 𝝈 - Volatility of S_t

Analyzing the relevant variables we discover that most values can be precisely
determined at any point in time by searching external data sources:

- S_t can be queried from spot markets
- K is fixed for each option type
- r can be queried from a selected central bank rate (Carmine actually sets it

as a constant for each option type upon creation)
- T is fixed for each option type

11



- t can be queried from the current block’s time

Indeed all those values are fixed, except for S_t which Carmine queries from an
on-chain oracle (see oracle section for security concerns).

The calculation of 𝝈 is the most innovative part of the protocol. Even in traditional
finance, there is a high degree of disagreement on how to calculate 𝝈 and finance
practice discourages the usage of implied volatility from the Black-Schole model
given its assumption of lognormal price distributions.

Instead of using the volatility of S_t, Carmine utilizes the volatility of the option
itself inside the protocol as its proxy. This allows the price to respond to trading
volume even if the underlying asset’s oracle price remains constant.

This design requires volatility for Puts and Calls and options of di�erent maturities
to be calculated separately.

The formula used to calculate volatility is:

Volatility is defined as the average between previous volatility and current
volatility.

The current volatility is calculated based on:

- C - constant determining the speed at which the volatility changes
- Q_t - size of trade at time t - positive for longs and negative for shorts)

12



It is important to distinguish between using Black-Scholes to price an option and
using Black-Scholes to update an option’s price. The key di�erence is the way in
which volatility is estimated.

Considering Black-Scoles’ theoretical background, whenever the model deals with
volatility it is referring to the expected future volatility of the underlying asset.
This is a theoretical value that has to be predicted by whoever is using the model -
common proxies used in financial markets are past volatility and volatility indexes.
It is also important to note that, whenever we look at an option’s current market
price it would be theoretically possible to derive its implied volatility by applying
the model - however, such derivation does not work in practice since
Black-Scholes assumes a lognormal distribution, whilst market agents tend to
price expected volatility with skewness and kurtosis in the distribution curve.

Carmine’s pricing algorithm already takes these concepts into account and uses
Black-Scholes as a price updating mechanism. By updating the volatility with
every trade performed, the algorithm is able to adjust supply and demand even if
all oracle feeds and model variables remain constant. It is necessary, however, to
be very careful when tuning the model’s parameters for new options as price
divergences from price-discovery markets2 generate arbitrage opportunities.
There is no problem per se with arbitrage on the protocol as it is necessary to
maintain price parity, however, the algorithm must be optimized to converge to
correct prices as easily as possible since every arbitrage trade represents a loss
for liquidity providers.

Through mathematical modeling, we were unable to find vulnerabilities in the
protocol. However, we recommend caution in the deployment of the application as
it is not possible to predict how market agents and arbitrage bots are going to
react to the AMM. The team is taking the correct approach by phasing the
protocol’s deployment and establishing trade limits to ensure the safety of
liquidity providers’ funds.

3.4 External contract dependencies

Interoperability between smart contracts is a major source of risk. Bugs, exploits
or errors in dependency smart contracts can cause unpredicted problems for the
protocol.

Carmine only integrates one external contract - the Empiric Oracle solution to
provide the prices of underlying assets.

Carmine fetches price data from the oracle using 2 di�erent functions:

2 Price-discovery markets are highly liquid markets where most of the trade of a certain instrument takes
place. Usually prices are formed in this market and other less liquidy markets follow through
arbitrageurs trades.

13



- empiric_median_price -> calls get_spot_meadian on oracle - which
returns the current median price from all spot sources

- This is used to price the option before expiry
- get_terminal_price -> calls get_last_spot_checkpoint_before on oracle -

which returns last checkpoint value before option expiry
- This is used to price the option in maturity

Empiric is designed to be a decentralized oracle, with multiple data sources for
maximum availability and trustworthiness and has been audited by multiple
independent auditing firms. All these reasons validate the trust that the project
has in the oracle.

However, there are two situation in which the oracles functionality might be
compromised:

Network congestion

In the event of network congestion, it is possible that data publishers of Empiric
are unable to post their data in time, which is going to cause the oracle’s spot
price to be outdated.

In the scenario of persistent outdated prices, traders are able to take a large
number of trades until the volatility parameters compensate for the price. This is
going to cause a huge loss for the liquidity pool and might lock a large percentage
of the pool’s capital, further hindering withdrawals.

Empiric Oracle has a mechanism to help protocols deal with this problem, every
query to the Oracle returns last_updated_timestamp. Validating that price feeds
are not stale for a long time is a good way to prevent huge losses for the pool, in
case of stale prices trading could be halted until oracles update prices again.

Asset depegging

The Oracle price feed uses USD, while the protocol’s pools are denominated in
USDC. This is not a problem for pools based on base assets (Call pools) since they
essentially represent a real ETH/USD option with no influence from any stablecoin.

On the other hand, Put pools are denominated in the quote asset, which might
cause confusion. In the case of a stablecoin deppeging from its target price, the
option’s prices and payouts are going to be distorted.

This situation introduces a lot of financial complexity and can cause unintended
consequences including:

1. Unexpected behavior of portfolio when on-chain traders use options as a
hedge for their positions

2. Possibilities of huge flash loan predatory arbitrages in depegging events

14



3. Mathematical complexity in modeling option payouts and fair value given
stablecoin risk

In our view, a simpler approach would be preferred, by tracking the price of
ETH/USDC from oracles (this is possible by composing the ETH/USD and
USDC/USD oracles o�ered by Empiric).

3.5 Team indicated concerns

An important aspect of security reviews is to understand the domains of
knowledge that the team is most comfortable with and which parts of the code
are more heavily battle tested and which have undergone a lot of iteration and
recent updates.

After asking the project’s team about the areas they were more eager to see
tested through the audit they have pointed out the following:

1. Eventual Starknet Renegenesis issues
2. Recent updates on volatility calculation
3. Recent updates on reentrancy protection
4. Usage of Black-Scholes as price updating mechanism (not price discovery

mechanism)
5. Impossibility to compute the pool’s valuation in specific cases causing the

trading of the option to be locked

The team also mentioned a series of usage issues related to front-end and testnet
deployment which were kept out of the report as they were irrelevant to the
security audit.

We have evaluated each of the individual requests:

Eventual Starknet Regenesis issues

Starknet still runs as an Alpha version. At this point, the blockchain’s Virtual
Machine (VM) runs both Cairo 0.x versions3 and Cairo 1.0. However, the planned
roadmap is to entirely eliminate support for 0.x versions of Cairo in the future, to
simplify the development and usage of the network.

This event is called Regenesis and once it happens all existing Cairo 0.x contracts
in Starknet are going to stop working.

3 0.x refers to all minor versions before Cairo 1.0

15



The network is currently in a Transition period, in which Cairo 1.0 is being rolled
out. Cairo 1.0 has not yet reached feature parity with Cairo 0.x, but once it does, it
is going to be possible/necessary to upgrade all existing contracts to Cairo 1.0.

As explained by Starkware’s team in this thread, a further update to Starknet is
going to introduce a special syscall to upgrade existing contract addresses’ code
to a Cairo 1.0 version. All existing applications are required to perform such a
migration lest they are going to stop working as Regenesis goes live.

After carefully reviewing the planned Regenesis architecture and requirements on
o�cial documentation and Starknet’s forums we have come to the conclusion that
there is no risk for Carmine as long as Regenesis happens in the way that it is
planned.

Since Carmine already implements a Proxy-based architecture, it must execute
the following steps for the contract to work after Regenesis:

1. As soon as the Proxy contract is available in Cairo 1.0, the team must alter
the implementation contract to include a migrate function that would
migrate the Proxy’s code to a new class_hash corresponding to the Cairo
1.0 implementation;

2. The team must then point the proxy to the new implementation and call
migrate function;

3. Now Proxy is already using Cairo 1.0, although implementation is still using
0.x. The team must now rewrite the implementation code using Cairo 1.0,
deploy it and point Proxy to its new class_hash. This step can be performed
even after the Regenesis (but the contract is going to be stuck from
Regenesis until this upgrade is made)

The only precaution needed from the team is to keep up with Starknet’s
announcements regarding Regenesis to guarantee that every necessary measure
is taken at the appropriate dates.

Recent updates on volatility calculation

Volatility values were previously considered the same for options trading in the
same liquidity pool and with the same maturity date. This meant that options with
di�erent strike prices would always consider the same volatility parameters. This
setup has been changed and now each di�erent option has its volatility calculated
separately.

16

https://community.starknet.io/t/regenesis-state-migration-current-suggestion/2080


If we consider the e�cient market hypothesis4, options with the same maturity
and underlying asset should have the same implied volatility. Nevertheless, in real
markets, di�erent implied volatilities are observed for di�erent strike prices. The
new volatility model is better as it allows the market to determine the implied
volatility of the underlying asset instead of forcing the theoretical equivalence.

We have not found any conceptual problem when looking at such a scenario.
These arbitrage opportunities are moderate and in line with the expected
arbitrage to bring on-chain prices in line with those practiced in price-discovery
markets.

Upon analyzing the code implementation of the new volatility calculation we have
run fuzzing tests on the contract to guarantee results are correct for every
di�erent pool. We were not able to find any inconsistencies with the intended
behavior.

Recent updates on reentrancy protection

The team has introduced the reentrancy guard pattern from Openzeppelin’s library
into the AMM contract in 3 di�erent functions:

- do_trade
- close_position
- expire_option_token

The pattern is relevant here since calling these 3 functions (which are actually
internal functions called from other @external functions) results in the transfer of
ERC20 tokens between accounts (calls to external contracts not controlled by the
project).

After analyzing the functions, we have identified that the contract only ever calls
4 di�erent contract interfaces:

1. Empiric oracle
2. LP tokens
3. Option tokens
4. ERC20 tokens

The main risk of reentrancy attacks happens when the contract calls an untrusted
contract that might hijack the application flow and implement malicious logic.

In this case, only Empiric oracle and ERC20 tokens are external contracts.

Empiric oracle is a fixed contract address that is already trusted by Carmine for
very important processes. In this case, reentrancy is not a risk.

4 The efficient market hypothesis considers a market in equilibrium, where there are no arbitrage
opportunities.

17



ERC20 contracts are where the biggest risk lies. The addresses accepted by the
contract are imputed when new pools are initialized. In case a pool is initialized
with a token contract that is malicious, there is a risk of reentrancy being used.
Nevertheless, this risk is very low as the protocol needs to vet every token
contract that is accepted.

Overall it is a good practice to implement reentrancy locks when calls to
undetermined contracts are made, but there are instances where calls to ERC20
contracts are made without implementing reentrancy locks: withdraw_liquidity,
deposit_liquidity. We suggest implementing the locks in these functions to follow
the pattern for every untrusted external contract call.

Usage of Black-Scholes as price updatingmechanism

There can be a series of problems when using Black-Scholes as a pricing
mechanism for options. In traditional markets, the Black-Scholes model does not
always represent the observed market prices for a variety of reasons. If the AMM
were to simply use Black-Scholes for pricing it could end up having its entire
liquidity drained by arbitrageurs when the model’s prices diverge from prices
found in more liquid markets.

Carmine uses Black-Scholes instead as a price-updating mechanism. The key
factor here is the usage of the option’s volatility as the volatility parameter in the
model. The Black-Scholes model together with the volatility updating formula
describes the pricing curve for the AMM - similar to how AMMs for spot markets
function - supply and demand are balanced through the volatility update.

Any flaw of the Black-Scholes model that can be considered relevant when pricing
options - such as distribution assumptions - is not relevant here since the AMM is
going to balance supply and demand by updating the volatility and Black-Scholes
merely gives out the shape of the curve.

Impossibility to compute pool’s valuation in specific cases causing the
trading of the option to be locked

The current implementation of Black-Scholes and Cumulative Distribution
Function of the normal distribution currently has a problem when dealing with too
distant strike prices (option too much in or out of the money) or too close to
expiration. Under those conditions, the model is not able to converge to an answer
within the blockchain’s limitations, causing trading and liquidity
deposits/withdrawals to halt.

This is a recognized limitation of the system that the team intends to improve on
further versions of the app. It is relevant nevertheless for the scope of the audit to
understand if a malicious actor can abuse this limitation of the code to cause
financial damages to the protocol.

18

https://medium.com/@kinaumov/back-to-the-basics-uniswap-balancer-curve-e930c3ad9046
https://medium.com/@kinaumov/back-to-the-basics-uniswap-balancer-curve-e930c3ad9046


The hypothesis explored during the audit were:

1. Exploiters forcibly pushing the price of the option to lock the pool’s capital
2. Fuzzing parameters to find odd relations that would also break the pricing

mechanism

Hypothesis 1 was focused on more broad DeFi attacks. Let us suppose a liquidity
provider in Carmine also holds a large undercollateralized position in a lending
protocol. Attackers could buy a huge chunk of options in the same block to lock all
liquidity in Carmine and stop the provider from recovering capital to recollateralize
the position, thus forcing a liquidation.

After exploring this scenario we found it very unlikely given that (1) liquidity
providers are aware of the possible locking of their capital and (2) this attack
would carry a large economic cost to move the price of the options, especially if
liquidity in the pool is abundant. We thus did not consider it viable

Hypothesis 2 was tested through fuzzing on the Black-Scholes implementation
and comparing it against results on native non-blockchain based
implementations. Our tests did not find significant results showing possibilities of
having trades/liquidity locked outside of the cases already expected.

Overall, although a problem that must be improved upon in the next iterations of
the protocol, the problem in computing options prices did not create any viable
exploit options.

3.6 Generic Vulnerability Hypothesis

Besides the specific studies highlighted above, checking for common
vulnerabilities found in blockchain and traditional attack vector repositories is also
a very relevant part of the audit process.

For this project we have focused on testing for the following vulnerabilities:

1. Overflows, Underflow, and arithmetics bugs
2. Access control implementation
3. Race conditions

Overflows, Underflow, and arithmetics bugs

Arithmetic bugs are a big concern for smart contracts that deal with complex
mathematical operations as is the case for Carmine Finance.

19



Starknet also magnifies the problem by adding the complexity of finite fields.

Carmine adds even more complexity through its use of Math64x61 library for
fixed-point arithmetics.

Considering the stacked layers of complexity found in the contract’s mathematical
operations, the team opted for an integration-based approach to catch bugs. This
is achieved by performing input fuzzing on the main contract functions and
checking that all results are the intended ones by comparing them against
expected results.

We were unable to find any inconsistencies besides those already documented for
the Black-Scholes model calculation.

Access control implementation

Failed implementations of access control can lead to disastrous consequences.

The contract implements access control through the Proxy contract, which is
secure. In the setup, it only allows alterations of ownership if they are signed by
the owner and all protected functions assert their origin from the owner.

Race conditions

Race condition bugs arise when the ordering of transactions sent to the contract
alters their outcome in unintended ways.

The main situation in which this a�ects DeFi protocols is by allowing bots to
front-run legitimate traders and profit from their price movements. This
phenomenon cannot be entirely prevented by the protocol design itself and is also
present in centralized markets.

The contract implements parameters to control slippage and deny transactions in
case their final cost surpasses a user-defined parameter. We find this to be in line
with best practices and su�cient to prevent considerable user losses due to front
running.

20



4 Detailed issue report

AMM-1 - Handle stale oracle prices

Category Severity Location Status

External contract low oracles.cairo Fixed

Description
The Empiric oracle works by aggregating price information from multiple trusted sources
that push data on-chain in constant time intervals.
When get_spot_median is called on the oracle it returns the current price, the timestamp
when the price was last updated and the total number of data sources aggregated for the
call.

Even though the Empiric oracle network is designed for maximum availability and
trustworthiness, it is possible that network congestion, corruption of agents, and other
factors harm the speed of data aggregation. This causes the price in the oracle to become
outdated (stale).
In cases where the price becomes stale a lot of profitable arbitrage opportunities will arise
in the AMM, prompting traders to take advantage of them. This spikes volatility in the
AMM’s formula. Once the price feeds go back online, new huge arbitrage opportunities will
arise, as the price in the formula abruptly changes and volatility remains spiked for the
first trades.
Large enough times of stale prices or oracle intermittency might generate a lot of huge
arbitrages that end up hurting liquidity providers.

Recommendation
To avoid unintended consequences of having trades settled using stale prices over long
time periods it is recommended to implement a transaction lock whenever oracle prices
are found to be stale. The exact time limit for prices to be considered stale should be
defined for each feed, according to the feed’s characteristics.

Alleviation
Team implemented a lock on trading if oracle prices go stale for over an hour. This
measure greatly reduces the risk of abusing congested network situations and manages
to maintain high availability of the protocol.

21



AMM-2 - Diverging pool-oracle assets

Category Severity Location Status

Logical Medium oracle.cairo Fixed

Description
The current logic of the contract queries the oracle for prices using USD as the quote
asset (e.g. ETH/USD), however, the liquidity pools for trades are implemented using USDC
as the quote asset (e.g. ETH/USDC).
Even though USDC is a stablecoin that aims to be pegged 1:1 to USD it is possible that
market volatility, insolvency issues, and high demand for stables/fiat alter its value
relative to USD. This kind of issued has been seen repeatedly in the last 12 months and
cannot be ignored by DeFi protocols anymore.
This setup does not a�ect call pools as they are denominated in the base asset only. On
the other hand, put pools are going to su�er from inconsistency. In depegging scenarios,
DeFi hedging positions might be rendered useless as the pool uses USD for quoting and
USDC for payments. Moreover, in the complex fallouts of a congested network over
black-swan kinds of events, the financial implications of the confusion between assets
might be the driver for liquidations and other unpredicted financial consequences.
Overall the current setup can have unintended consequences on depegging events,
especially when coupled with network congestion and panic sales that usually
accompany such events.

Recommendation
We advise the use of USDC as the quote asset when fetching prices from the oracle. This
can be obtained by fetching both ETH/USD (or whichever base token is being used) and
USDC/USD quotes from the oracle and performing the necessary calculations.

Alleviation
Team implemented the recommended changes, patching the vulnerability.

22



AMM-3 - Reentrancy guard consistency

Category Severity Location Status

Reentracy Informational liquidity_pool.cairo Fixed

Description
The code is currently applying the ReentrancyGuard pattern from the Openzeppelin
library on the following functions:

- do_trade
- close_position
- expire_option_token

These are all functions that perform calls to external unverified contracts (ERC20
tokens), which could theoretically produce a reentrancy problem.

However, there are 2 other functions in the contract that also perform similar
operations and do not implement the reentrancy protection:

- deposit_liquidity
- withdraw_liquidity

Recommendation
We advise the inclusion of reentrancy protection in all functions that perform external
contract calls to unverified contracts to maintain the security best practice and
consistency across the project.

Alleviation
Team implemented the reentrancy guard at every instance where there was a call to an
external undefined contract.

23



AMM-4 - Pricingmodel documentation

Category Severity Location Status

Documentation Informational Documentation Acknowledged

Description

The project carries a lot of mathematical complexity in its implementation. An
unaware reader of the documentation without access to the project team’s
expertise is likely to not be able to comprehend the rationale behind the pricing
model used in the protocol.

Moreover, explaining the technical di�erences between using the model as a
price-adjusting mechanism through the option’s volatility and using it as a general
price model might induce the reader to believe that the protocol uses incorrect
financial concepts.

Recommendation
We advise the inclusion of special documentation regarding the intended behavior of the
Black-Scholes and volatility models used in the contract. In particular, the updating
aspect of the model and its di�erence from the traditional use of Black-Scholes in
order-book-based trading should be explained.
It is also advisable to explain the rationale behind selecting such an algorithm and its
expected behavior in di�erent stress scenarios.

Adding overall contract documentation explaining the technical decisions and
architecture would also be a good practice to facilitate new developers and auditors when
first getting acquainted with the code.

Alleviation
The team acknowledged the issue, however chose not to implement the improvements at
this point as they do not pose any security threat. Team is going to improve
documentation over time as their technical resources become available for non essential
work.

24



AMM-5 - Test suite documentation

Category Severity Location Status

Documentation Informational Documentation Acknowledged

Description

The project has an extremely high-quality test suite in place performing a series
of important assertions to guarantee the correct functioning of the contracts.

However, to external auditors, developers and onlookers the test suite is extremely
hard to read and is not always clear about its intentions. Goos testing
documentation states (1) exactly what is - and what is not - being tested within
each test, (2) the organization of the test folder, (3) how and where to add new
tests when necessary.

Recommendation
We advise the inclusion of general documentation for the testing suite, explaining the
overall architecture and how to add new tests to it. Inside each file, documentation should
be improved to be more clear about exactly what is being tested, why, and how.

Alleviation
The team acknowledged the issue, however chose not to implement the improvements at
this point as they do not pose any security threat. Team is going to improve
documentation over time as their technical resources become available for non essential
work.

25



Disclaimer

This report is subject to the terms and conditions (including without limitation,
description of services, confidentiality, disclaimer, and limitation of liability) set
forth in the Services Agreement, or the scope of services, and terms and
conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the
Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any
person for any purposes, nor may copies be delivered to any other person other
than the Company, without Hack-a-Chain’s prior written consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of
any particular project or team. This report is not, nor should be considered, an
indication of the economics or value of any “product” or “asset” created by any
team or project that contracts Hack-a-Chain to perform a security assessment.
This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of
the technologies proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or
involvement with any particular project. This report in no way provides investment
advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intended to help our customers
increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing
risk. Hack-a-Chain’s position is that each company and individual are responsible
for their own due diligence and continuous security.

Hack-a-Chain’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies,
and in no way claims any guarantee of security or functionality of the technology
we agree to analyze.

The assessment services provided by Hack-a-Chain are subject to dependencies
and are under continuing development. You agree that your access and/or use,
including but not limited to any services, reports, and materials, will be at your sole
risk on an as-is, where-is, and as-available basis. Cryptographic tokens are

26



emergent technologies and carry with them high levels of technical risk and
uncertainty. The assessment reports could include false positives, false negatives,
and other unpredictable results. The services may access, and depend upon,
multiple layers of third parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCTS, OR
OTHER MATERIALS,OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE
PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS
WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, HACK-A-CHAIN HEREBY DISCLAIMS ALL WARRANTIES,
WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE
FOREGOING, HACK-A-CHAIN SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE OF DEALING,
USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, HACK-A-CHAIN
MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE
ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE
COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR
BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE.
WITHOUT LIMITATION TO THE FOREGOING, HACK-A-CHAIN PROVIDES NO
WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND
THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY
INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET
ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT
ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED. WITHOUT LIMITING THE
FOREGOING, NEITHER HACK-A-CHAIN NOR ANY OF HACK-A-CHAIN’S AGENTS
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
AS TO THE ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR
CONTENT PROVIDED THROUGH THE SERVICE. HACK-A-CHAIN WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES
OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND
INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL
INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT,
OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION
OR WARRANTY OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY
BETWEEN CUSTOMER AND THE THIRD-PARTY OWNER OR DISTRIBUTOR OF THE
THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER
ARE SOLELY PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY

27



OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS
AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
HACK-A-CHAIN’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A
THIRD PARTY OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT
REPORT, AND ANY ACCOMPANYING MATERIALS AND NO SUCH THIRD PARTY
SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST HACK-A-CHAIN WITH
RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING
MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF HACK-A-CHAIN CONTAINED IN THIS
AGREEMENT ARE SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO
THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A
THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND
WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF
CONTRIBUTION AGAINST HACK-A-CHAIN WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING
IN INDEMNIFICATION UNDER THIS AGREEMENT OR OTHERWISE.
Carmine
FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED
ASSESSMENT REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

28



SECURITY AUDIT CERTIFICATE
Company Name

We, Hack-a-Chain, Blockchain Specialist Software Development and Audit Company, in
this act represented by our Chief Technology O�cer, João Antônio Schmidt da Veiga,
grant this Security Audit Certificate in favor of Carmine Finance, recognizing that they
underwent the security audit process and corrected all the issues that have been found in
their smart contract.

The full security audit report and it’s disclaimer can be found in the following link:

https://github.com/hack-a-chain/security-audits

Devoted to enhancing security in the Blockchain Ecosystem and to provide the best
quality service for our clients and the community, we sign this Certificate:

João Antônio Schmidt da Veiga
Chief Technology O�cer

29

https://github.com/hack-a-chain/security-audits

